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Even the most seasoned students of evolution, starting with Darwin
himself, have occasionally expressed amazement that the mecha-
nism of natural selection has produced the whole of Life as we see
it around us. There is a computational way to articulate the same
amazement: “What algorithm could possibly achieve all this in
a mere three and a half billion years?” In this paper we propose
an answer: We demonstrate that in the regime of weak selection,
the standard equations of population genetics describing natural
selection in the presence of sex become identical to those of a re-
peated game between genes played according to multiplicative
weight updates (MWUA), an algorithm known in computer science
to be surprisingly powerful and versatile. MWUA maximizes a
tradeoff between cumulative performance and entropy, which
suggests a new view on the maintenance of diversity in evolution.

coordination games | learning algorithms

Precisely how does selection change the composition of the
gene pool from generation to generation? The field of pop-

ulation genetics has developed a comprehensive mathematical
framework for answering this and related questions (1). Our
analysis in this paper focuses particularly on the regime of weak
selection, now a widely used assumption (2, 3). Weak selection
assumes that the differences in fitness between genotypes are small
relative to the recombination rate, and consequently, through a
result due to Nagylaki et al. (4) (see also ref. 1, section II.6.2),
evolution proceeds near linkage equilibrium, a regime where the
probability of occurrence of a certain genotype involving various
alleles is simply the product of the probabilities of each of its
alleles. Based on this result, we show that evolution in the regime
of weak selection can be formulated as a repeated game, where
the recombining loci are the players, the alleles in those loci are
the possible actions or strategies available to each player, and the
expected payoff at each generation is the expected fitness of an
organism across the genotypes that are present in the population.
Moreover, and perhaps most importantly, we show that the equa-
tions of population genetic dynamics are mathematically equivalent
to positing that each locus selects a probability distribution on
alleles according to a particular rule which, in the context of the
theory of algorithms, game theory, and machine learning, is
known as the multiplicative weight updates algorithm (MWUA).
MWUA is known in computer science as a simple but surpris-
ingly powerful algorithm (see ref. 5 for a survey). Moreover,
there is a dual view of this algorithm: each locus may be seen as
selecting its new allele distribution at each generation so as to
maximize a certain convex combination of (i) cumulative expected
fitness and (ii) the entropy of its distribution on alleles. This con-
nection between evolution, game theory, and algorithms seems to us
rife with productive insights; for example, the dual view just men-
tioned sheds new light on the maintenance of diversity in evolution.
Game theory has been applied to evolutionary theory before,

to study the evolution of strategic individual behavior (see, e.g.,
refs. 6, 7). The connection between game theory and evolution
that we point out here is at a different level, and arises not in the
analysis of strategic individual behavior, but rather in the analysis
of the basic population genetic dynamics in the presence of
sexual reproduction. The main ingredients of evolutionary game

theory, namely strategic individual behavior and conflict between
individuals, are extraneous to our analysis.
We now state our assumptions and results. We consider an

infinite panmictic population of haplotypes involving several un-
linked (i.e., fully recombining) loci, where each locus has several
alleles. These assumptions are rather standard in the literature.
They are made here to simplify exposition and algebra, and there is
no a priori reason to believe that they are essential for the results,
beyond making them easily accessible. For example, Nagylaki’s
theorem (4), which is the main analytical ingredient of our results,
holds even in the presence of diploidy and partial recombination.
Nagylaki’s theorem states that weak selection in the presence

of sex proceeds near the Wright manifold, where the population
genetic dynamics becomes (SI Text)

x t+1i ð jÞ= 1
Xt x

t
i ð jÞ

�
Ft
ið jÞ

�
;

where x ti ð jÞ is the frequency of allele j of locus i in the population at
generation t, X is a normalizing constant to keep the frequencies
summing to 1, and Ft

ið jÞ is the mean fitness at time t among gen-
otypes that contain allele j at locus i (see ref. 4 and SI Text). Under
the assumption of weak selection, the fitnesses of all genotypes are
close to one another, say within the interval [1 − «, 1 + «], and so
the fitness of genotype g can be written as Fg = 1 + «Δg, where « is
the selection strength, assumed here to be small, and Δg ∈ [−1, 1]
can be called the differential fitness of the genotype. With this in
mind, the equation above can be written

x t+1i ð jÞ= 1
Xt x

t
ið jÞ

�
1+ eΔt

ið jÞ
�
; [1]

where Δt
ið jÞ is the expected differential fitness among genotypes

that contain allele j at locus i (see Fig. 1 for an illustration of
population genetics at linkage equilibrium).
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and weak selection is equivalent to a repeated game between
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for the pursuit of two key problems in evolution: the role of sex
and the maintenance of variation.
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We now introduce the framework of game theory (see Fig. 2
for an illustration) and the MWUA (SI Text), studied in com-
puter science and machine learning, and rediscovered many
times over the past half-century; as a result of these multiple
rediscoveries, the algorithm is known with various names across
subfields: “the experts algorithm” in the theory of algorithms,
“Hannan consistency” in economics, “regret minimization” in
game theory, “boosting” and “winnow” in artificial intelligence,
etc. Here we state it in connection to games, which is only a small
part of its applicability (see SI Text for an introduction to the
MWUA in connection to the so-called “experts problem” in
computer science).
A game has several players, and each player i has a set Ai of

possible actions. Each player also has a utility, capturing the way
whereby her actions and the actions of the other players affect
this player’s well-being. Formally the utility of a player is a
function that maps each combination of actions by the players to
a real number (intuitively denoting the player’s gain, in some
monetary unit, if all players choose these particular actions). In
general, rather than choosing a single action, a player may in-
stead choose a mixed or randomized action, that is, a probabi-
listic distribution over her action set. Here we only need to
consider coordination games, in which all players have the same
utility function—that is, the interests of the players are perfectly
aligned, and their only challenge is to coordinate their choices
effectively. Coordination games are among the simplest games;
the only challenge in such a game is for the players to “agree” on
a mutually beneficial action.
How do the players choose and adjust their choice of ran-

domized (mixed) actions over repeated play? Assume that at
time t, player i has mixed action x ti , assigning to each action j ∈ Ai

the probability xtið jÞ. The MWUA algorithm (5) adjusts the mixed
strategy for player i in the next round of the game according to
the following rule:

x t+1i ð jÞ= 1
Zt x

t
ið jÞ

�
1+ eutið jÞ

�
; [2]

where Zt is a normalizing constant designed to ensure thatP
j x

t
i ð jÞ= 1, so x t+1i is a probability distribution; « is a crucial small

positive parameter, and utið jÞ denotes the expected utility gained
by player i choosing action j in the regime of the mixed actions by
the other players effective at time t. This algorithm (i) is known
to converge to the min–max actions if the game is two-player
zero-sum; (ii) is also shown here to converge to equilibrium for
the coordination games of interest in the present paper (SI Text,
Corollary 5); (iii) is a general “learning algorithm” that has been
shown to be very successful in both theory and practice; and (iv)
if, instead of games, it is applied to a large variety of optimization
problems, including linear programming, convex programming,
and network congestion, it provably converges to the optimum
quite fast.
It can be now checked that the two processes expressed in Eqs.

1 and 2, evolution under natural selection in the presence of sex
and multiplicative weight updates in a coordination game, are
mathematically identical (SI Text, Theorem 3). That is, the in-
teraction of weak selection and sex is equivalent to the MWUA in
a coordination game between loci in which the common utility is
the differential fitness of the organism. The parameter « in the
algorithm, which, when small signifies that the algorithm is taking
a “longer-term view” of the process to be solved (SI Text), cor-
responds to the selection strength in evolution, i.e., the magni-
tude of the differences between the fitness of various genotypes.
The MWUA is known in computer science as an extremely

simple and yet unexpectedly successful algorithm, which has sur-
prised us time and again by its prowess in solving sophisticated
computational problems such as congestion minimization in
networks and convex programming in optimization. The obser-
vation that multiplicative weight updates in a coordination game
are equivalent to evolution under sex and weak selection makes
an informative triple connection between three theoretical fields:

A B

C D

Fig. 1. Equations of population genetics formulated in the 1930s constitute the standard mathematical way of understanding evolution of a species by
tracking the frequencies of various genotypes in a large population. In the simple example shown here, a haploid organism with two genetic loci A and B has
three alleles in each of its two loci named A1, A2, A3 and B1, B2, B3 for a total of nine genotypes. In A we show the fitness of each genotype, that is, its
expected number of offspring. The fitness numbers shown in A are all close to each other, reflecting weak selection, where the individual alleles’ con-
tributions to fitness are typically minuscule. Initially, each genotype occurs in the population with some frequency; in this particular example these numbers
are initially equal (B); naturally, their sum over all nine genotypes is 1 (frequencies are truncated to the fourth decimal digit). C shows how the genotype
frequencies evolve in the next generation: each individual of a given genotype produces a number of offspring that is proportional to its fitness shown in A,
and the resulting offspring inherits the alleles of its parents with equal probability (because we are assuming, crucially, sexual reproduction). The genotype
frequencies in the next generation are shown in C, calculated through the standard recurrence equations of population genetics. We also show in the margins
of the table the allele frequencies, obtained by adding the genotype frequencies along the corresponding row or column. Ten generations later, the fre-
quencies are as shown in D.
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evolutionary theory, game theory, and the theory of algorithms–
machine learning.
So far we have presented the MWUA by “how it works” (in-

formally, it boosts alleles proportionally to how well they do in
the current mix). There is an alternative way of understanding
the MWUA in terms of “what it is optimizing.” That is, we
imagine that the allele frequencies of each locus in each gener-
ation are the result of a deliberate optimization by the locus of
some quantity, and we wish to determine that quantity.
Returning to the game formulation, define Ut

i ð jÞ=
Pt

τ=0u
τ
i ð jÞ

to be the cumulative utility obtained by player i by playing strategy j
over all t first repetitions of the game, and consider the quantity

X

j

xtið jÞUt
i ð jÞ−

1
e

X

j

xtið jÞln xtið jÞ: [3]

The first term is the current (at time t) expected cumulative
utility. The second term of 3 is the entropy (expected negative
logarithm) of the probability distribution {xi( j), j = 1, . . . jAij},
multiplied by a large constant 1=e. Suppose now that player i
wished to choose the probabilities of actions xtiðjÞs with the sole
goal of maximizing the quantity 3. This is a relatively easy opti-
mization problem, because the quantity 3 to be maximized is strictly
concave, and therefore it has a unique maximum, obtained through
the Karush–Kuhn–Tucker conditions of optimality (8) (SI Text,
section 4):

Ut
i ð jÞ−

1
e

�
1+ ln xtið jÞ

�
+ μt = 0:

[Here μt is the Lagrange multiplier associated with the con-
straint

P
j x

t
ið jÞ= 1 seeking to keep the xtið jÞs a probability

distribution; see SI Text.] Subtracting this equation from its ho-
molog with t replaced by t + 1, and applying the approxima-
tion expðeutið jÞÞ≈ ð1+ eutið jÞÞ, we obtain the precise Eq. 2 (the
normalization Zt is obtained from μt and μt+1; see SI Text for the
more detailed derivation).
Thus, because Eqs. 1 and 2 are identical, we conclude that, in

the weak selection regime, natural selection is tantamount to
each locus choosing at each generation its allele frequencies in
the population so as to maximize the sum of the expected cumu-
lative differential fitness over the alleles, plus the distribution’s
entropy. Note that quantity 3 is maximized by genes, not by
individuals, and that, interestingly, it is maximized with respect
to current frequencies while being dependent (through Ut) on
all past frequencies, and although there is some precedent to
the use of “historical fitness” (9), its importance in this context
is unexpected.
This alternative view of selection provides a new insight into

an important question in evolutionary biology, namely: How is
genetic diversity maintained in the presence of natural selection
(10)? That the MWUA process enhances the entropy of the
alleles’ distribution (while at the same time optimizes expected
cumulative utility) hints at such a mechanism. In fact, entropy is
enhanced inversely proportional to s (the quantity corresponding
in the population genetics domain to the parameter «), the se-
lection strength: The weaker the selection, the more it favors
high entropy. Naturally, entropy will eventually vanish when the
process quiesces at equilibrium: One allele per locus will even-
tually be fixed, and in fact this equilibrium may be a local, as
opposed to global, fitness maximum. However, we believe that it
is interesting and significant that the entropy of the allele dis-
tribution is favored by selection in the transient; in any event,
mutations, environmental changes, and finite population effects
are likely to change the process before equilibrium is reached.

A B

C D

Fig. 2. A simple coordination game is played by two players: the row player, who chooses a row, and the column player, who chooses a column. After the
two players make a choice, they both receive (or both pay, in case of a negative entry) the same amount of money, equal to the number at the chosen row
and column (A). Coordination games are the simplest possible kind of a game, one in which the strategic interests of all players are completely aligned—that
is to say, there is no conflict at all. They are of interest when it is difficult for the players to know these numbers, or to communicate and agree on a mutually
beneficial combination (in this example, third row and second column). Notice that this particular coordination game is closely related to the fitness landscape
shown in Fig. 1A: If P is a payoff in this game, the corresponding entry of Fig. 1A is equal to 1 + « · P, where « is a small parameter here taken to be 0.01.
Suppose that each of the two players chooses each of the three options with some probability, initially 1=3 for all (B); in game theory such probabilistic play is
called a mixed action. How do we expect these probabilities to change over repeated play? One famous recipe is the MWUA, in which a player “boosts” the
probability of each option by multiplying it by 1 + «G, where G is the expected amount of money this option is going to win the player in the current round of
play, and « is the same small parameter as above. For example, the second action of the row player has G equal to 2 (the average of 3, −1, and 4), and so the
probability of playing the second row will be multiplied by 1.02. Then these weights are “renormalized” so they add up to 1, yielding the marginal prob-
abilities shown in C. The probabilities after 10 such rounds of play are shown in D. Comparing now the numbers in the margins of Figs. 1D and 2D, we notice
that they are essentially the same. This is what we establish mathematically in this paper: the two processes—repeated coordination games played through
multiplicative updates, and evolution under weak selection—are essentially identical. This conclusion is of interest because the MWUA is known in computer
science to be surprisingly powerful.
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This new way of understanding the maintenance of variation in
evolution (selection as a tradeoff between fitness and entropy
maximization) is quite different from previous hypotheses for
the maintenance of variation (e.g., refs. 11, 12). Another rather
surprising consequence of this characterization is that, under weak
selection, all past generations, no matter how distant, have equal
influence on the change in the allele mix of the current generation.
Our discussion has focused on the evolution of a fixed set of

alleles; that is, we have not discussed mutations. Mutations are,
of course, paramount in evolution, as they are the source of
genetic diversity, and we believe that introducing mutations to
the present analysis is an important research direction. Here we
focus on the selection process, which is rigorously shown to be
tantamount to a tradeoff, for each locus, between maximizing
diversity and maximizing expected cumulative fitness.
We can now note a simple yet important point. Because

multiplicative weight updates by the loci operate in the presence
of sex, the triple connection uncovered in this paper is in-
formative for the “queen of problems in evolutionary biology,”
namely the role of sex in evolution (13, 14). The notion that the

role of sex is the maintenance of diversity has been critiqued
(15), because sex does not always increase diversity, and diversity
is not always favorable. The MWUA connection sheds new light
on the debate, because sex is shown to lead to a tradeoff between
increasing entropy and increasing (cumulative) fitness.
The connection between the three fields, evolution, game

theory, and learning algorithms, described here was not acces-
sible to the founders of the modern synthesis, and we hope that it
expands the mathematical tracks that can be traveled in evolu-
tion theory.
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